Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Ethereum Devs Are Underpaid by Over 50%: Report

    September 14, 2025

    Each Tremendous Mario Recreation, Ranked From Worst To Greatest

    September 14, 2025

    Sri Lanka beat Bangladesh with ease in Asia Cup encounter – Sport

    September 14, 2025
    Facebook X (Twitter) Instagram
    Sunday, September 14
    Trending
    • Ethereum Devs Are Underpaid by Over 50%: Report
    • Each Tremendous Mario Recreation, Ranked From Worst To Greatest
    • Sri Lanka beat Bangladesh with ease in Asia Cup encounter – Sport
    • Dunfee and Perez declare opening world golds in Tokyo
    • Neighborhood rallies in Toronto to name for finish to gun violence – Toronto
    • High 12 Robotics AI Blogs/NewsWebsites 2025
    • IMF to evaluate Pakistan’s flood spending, price range agility
    • Why Onchain Crypto Collateral Can Get You Higher Mortgage-To-Worth Ratios
    • Holoearth Chronicles Facet:E Yamato Phantasia Is Enjoyable Even With out Context
    • Google’s Gemini AI collectible figurines makes buzz on social media
    Facebook X (Twitter) Instagram Pinterest Vimeo
    The News92The News92
    • Home
    • World
    • National
    • Sports
    • Crypto
    • Travel
    • Lifestyle
    • Jobs
    • Insurance
    • Gaming
    • AI & Tech
    • Health & Fitness
    The News92The News92
    Home»AI & Tech»Easy methods to Construct a Sturdy Superior Neural AI Agent with Steady Coaching, Adaptive Studying, and Clever Resolution-Making?
    AI & Tech

    Easy methods to Construct a Sturdy Superior Neural AI Agent with Steady Coaching, Adaptive Studying, and Clever Resolution-Making?

    Naveed AhmadBy Naveed AhmadSeptember 14, 2025No Comments5 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    class AdvancedNeuralAgent:
       def __init__(self, input_size, hidden_layers=[64, 32], output_size=1, learning_rate=0.001):
           """Superior AI Agent with secure coaching and choice making capabilities"""
           self.lr = learning_rate
           self.initial_lr = learning_rate
           self.layers = []
           self.reminiscence = []
           self.performance_history = []
           self.epsilon = 1e-8 
          
           layer_sizes = [input_size] + hidden_layers + [output_size]
           for i in vary(len(layer_sizes) - 1):
               fan_in, fan_out = layer_sizes[i], layer_sizes[i+1]
               restrict = np.sqrt(6.0 / (fan_in + fan_out))
              
               layer = {
                   'weights': np.random.uniform(-limit, restrict, (layer_sizes[i], layer_sizes[i+1])),
                   'bias': np.zeros((1, layer_sizes[i+1])),
                   'momentum_w': np.zeros((layer_sizes[i], layer_sizes[i+1])),
                   'momentum_b': np.zeros((1, layer_sizes[i+1]))
               }
               self.layers.append(layer)
      
       def activation(self, x, func="relu"):
           """Steady activation capabilities with clipping"""
           x = np.clip(x, -50, 50) 
          
           if func == 'relu':
               return np.most(0, x)
           elif func == 'sigmoid':
               return 1 / (1 + np.exp(-x))
           elif func == 'tanh':
               return np.tanh(x)
           elif func == 'leaky_relu':
               return np.the place(x > 0, x, x * 0.01)
           elif func == 'linear':
               return x
      
       def activation_derivative(self, x, func="relu"):
           """Steady derivatives"""
           x = np.clip(x, -50, 50)
          
           if func == 'relu':
               return (x > 0).astype(float)
           elif func == 'sigmoid':
               s = self.activation(x, 'sigmoid')
               return s * (1 - s)
           elif func == 'tanh':
               return 1 - np.tanh(x)**2
           elif func == 'leaky_relu':
               return np.the place(x > 0, 1, 0.01)
           elif func == 'linear':
               return np.ones_like(x)
      
       def ahead(self, X):
           """Ahead cross with gradient clipping"""
           self.activations = [X]
           self.z_values = []
          
           current_input = X
           for i, layer in enumerate(self.layers):
               z = np.dot(current_input, layer['weights']) + layer['bias']
               z = np.clip(z, -50, 50) 
               self.z_values.append(z)
              
               if i < len(self.layers) - 1: 
                   a = self.activation(z, 'leaky_relu')
               else: 
                   a = self.activation(z, 'linear')
              
               self.activations.append(a)
               current_input = a
          
           return current_input
      
       def clip_gradients(self, gradients, max_norm=1.0):
           """Gradient clipping to forestall explosion"""
           grad_norm = np.linalg.norm(gradients)
           if grad_norm > max_norm:
               gradients = gradients * (max_norm / (grad_norm + self.epsilon))
           return gradients
      
       def backward(self, X, y, output):
           """Steady backpropagation with gradient clipping"""
           m = X.form[0]
          
           dz = (output - y.reshape(-1, 1)) / m
           dz = np.clip(dz, -10, 10)
          
           for i in reversed(vary(len(self.layers))):
               layer = self.layers[i]
              
               dw = np.dot(self.activations[i].T, dz)
               db = np.sum(dz, axis=0, keepdims=True)
              
               dw = self.clip_gradients(dw, max_norm=1.0)
               db = self.clip_gradients(db, max_norm=1.0)
              
               momentum = 0.9
               layer['momentum_w'] = momentum * layer['momentum_w'] + (1 - momentum) * dw
               layer['momentum_b'] = momentum * layer['momentum_b'] + (1 - momentum) * db
              
               weight_decay = 0.0001
               layer['weights'] -= self.lr * (layer['momentum_w'] + weight_decay * layer['weights'])
               layer['bias'] -= self.lr * layer['momentum_b']
              
               if i > 0:
                   activation_func="leaky_relu" if i > 1 else 'leaky_relu'
                   dz = np.dot(dz, layer['weights'].T) * self.activation_derivative(
                       self.z_values[i-1], activation_func)
                   dz = np.clip(dz, -10, 10) 
      
       def adapt_learning_rate(self, epoch, performance_history):
           """Adaptive studying price with performance-based adjustment"""
           if epoch > 10:
               recent_performance = performance_history[-10:]
               if len(recent_performance) >= 5:
                   if recent_performance[-1] >= recent_performance[-5]:
                       self.lr = max(self.lr * 0.95, self.initial_lr * 0.01)
                   elif recent_performance[-1] < recent_performance[-5] * 0.98:
                       self.lr = min(self.lr * 1.02, self.initial_lr * 2)
      
       def calculate_loss(self, y_true, y_pred):
           """Steady loss calculation"""
           y_true = y_true.reshape(-1, 1)
           y_pred = np.clip(y_pred, -1e6, 1e6) 
          
           mse = np.imply((y_true - y_pred) ** 2)
           mae = np.imply(np.abs(y_true - y_pred))
          
           if not np.isfinite(mse):
               mse = 1e6
           if not np.isfinite(mae):
               mae = 1e6
              
           return mse, mae
      
       def store_experience(self, state, motion, reward, next_state):
           """Expertise replay for RL facets"""
           expertise = {
               'state': state,
               'motion': motion,
               'reward': reward,
               'next_state': next_state,
               'timestamp': len(self.reminiscence)
           }
           self.reminiscence.append(expertise)
          
           if len(self.reminiscence) > 1000:
               self.reminiscence.pop(0)
      
       def make_decision(self, X, exploration_rate=0.1):
           """Steady choice making"""
           prediction = self.ahead(X)
          
           if np.random.random() < exploration_rate:
               noise_scale = np.std(prediction) * 0.1 if np.std(prediction) > 0 else 0.1
               noise = np.random.regular(0, noise_scale, prediction.form)
               prediction += noise
          
           return np.clip(prediction, -1e6, 1e6)
      
       def reset_if_unstable(self):
           """Reset community if coaching turns into unstable"""
           print("🔄 Resetting community on account of instability...")
           for i, layer in enumerate(self.layers):
               fan_in, fan_out = layer['weights'].form
               restrict = np.sqrt(6.0 / (fan_in + fan_out))
               layer['weights'] = np.random.uniform(-limit, restrict, (fan_in, fan_out))
               layer['bias'] = np.zeros((1, fan_out))
               layer['momentum_w'] = np.zeros((fan_in, fan_out))
               layer['momentum_b'] = np.zeros((1, fan_out))
           self.lr = self.initial_lr
      
       def prepare(self, X, y, epochs=500, batch_size=32, validation_split=0.2, verbose=True):
           """Sturdy coaching with stability checks"""
           y_mean, y_std = np.imply(y), np.std(y)
           y_normalized = (y - y_mean) / (y_std + self.epsilon)
          
           X_trn, X_val, y_trn, y_val = train_test_split(
               X, y_normalized, test_size=validation_split, random_state=42)
          
           best_val_loss = float('inf')
           endurance = 30
           patience_counter = 0
          
           train_losses, val_losses = [], []
           reset_count = 0
          
           for epoch in vary(epochs):
               if epoch > 0 and (not np.isfinite(train_losses[-1]) or train_losses[-1] > 1e6):
                   if reset_count < 2: 
                       self.reset_if_unstable()
                       reset_count += 1
                       proceed
                   else:
                       print("🚫 Coaching unstable, stopping...")
                       break
              
               indices = np.random.permutation(len(X_train))
               X_train_shuffled = X_train[indices]
               y_train_shuffled = y_train[indices]
              
               epoch_loss = 0
               batches = 0
               for i in vary(0, len(X_trn), batch_size):
                   batch_X = X_train_shuffled[i:i+batch_size]
                   batch_y = y_train_shuffled[i:i+batch_size]
                  
                   if len(batch_X) == 0:
                       proceed
                  
                   output = self.ahead(batch_X)
                   self.backward(batch_X, batch_y, output)
                  
                   loss, _ = self.calculate_loss(batch_y, output)
                   epoch_loss += loss
                   batches += 1
              
               avg_train_loss = epoch_loss / max(batches, 1)
              
               val_output = self.ahead(X_val)
               val_loss, val_mae = self.calculate_loss(y_val, val_output)
              
               train_losses.append(avg_train_loss)
               val_losses.append(val_loss)
               self.performance_history.append(val_loss)
              
               if val_loss < best_val_loss:
                   best_val_loss = val_loss
                   patience_counter = 0
               else:
                   patience_counter += 1
              
               if patience_counter >= endurance:
                   if verbose:
                       print(f"✋ Early stopping at epoch {epoch}")
                   break
              
               if epoch > 0:
                   self.adapt_learning_rate(epoch, self.performance_history)
              
               if verbose and (epoch % 50 == 0 or epoch < 10):
                   print(f"Epoch {epoch:3d}: Prepare Loss = {avg_train_loss:.4f}, "
                         f"Val Loss = {val_loss:.4f}, LR = {self.lr:.6f}")
          
           self.y_mean, self.y_std = y_mean, y_std
           return train_losses, val_losses
      
       def predict(self, X):
           """Make predictions with denormalization"""
           normalized_pred = self.ahead(X)
           if hasattr(self, 'y_mean') and hasattr(self, 'y_std'):
               return normalized_pred * self.y_std + self.y_mean
           return normalized_pred
      
       def evaluate_performance(self, X, y):
           """Complete efficiency analysis"""
           predictions = self.predict(X)
           mse, mae = self.calculate_loss(y, predictions)
          
           y_mean = np.imply(y)
           ss_tot = np.sum((y - y_mean) ** 2)
           ss_res = np.sum((y.reshape(-1, 1) - predictions) ** 2)
           r2 = 1 - (ss_res / (ss_tot + self.epsilon))
          
           return {
               'mse': float(mse) if np.isfinite(mse) else float('inf'),
               'mae': float(mae) if np.isfinite(mae) else float('inf'),
               'r2': float(r2) if np.isfinite(r2) else -float('inf'),
               'predictions': predictions.flatten()
           }
      
       def visualize_training(self, train_losses, val_losses):
           """Visualize coaching progress"""
           plt.determine(figsize=(15, 5))
          
           plt.subplot(1, 3, 1)
           plt.plot(train_losses, label="Coaching Loss", alpha=0.8)
           plt.plot(val_losses, label="Validation Loss", alpha=0.8)
           plt.title('Coaching Progress')
           plt.xlabel('Epoch')
           plt.ylabel('Loss')
           plt.legend()
           plt.grid(True, alpha=0.3)
           plt.yscale('log')
          
           plt.subplot(1, 3, 2)
           if len(self.performance_history) > 0:
               plt.plot(self.performance_history)
               plt.title('Efficiency Historical past')
               plt.xlabel('Epoch')
               plt.ylabel('Validation Loss')
               plt.grid(True, alpha=0.3)
               plt.yscale('log')
          
           plt.subplot(1, 3, 3)
           if hasattr(self, 'lr_history'):
               plt.plot(self.lr_history)
               plt.title('Studying Charge Schedule')
               plt.xlabel('Epoch')
               plt.ylabel('Studying Charge')
               plt.grid(True, alpha=0.3)
          
           plt.tight_layout()
           plt.present()



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticlePark Group, Ehsan Al Qurashi seal landmark Makkah deal
    Next Article Two useless, one in hospital after car crash in Cape Breton – Halifax
    Naveed Ahmad
    • Website

    Related Posts

    AI & Tech

    High 12 Robotics AI Blogs/NewsWebsites 2025

    September 14, 2025
    AI & Tech

    California lawmakers cross AI security invoice SB 53 — however Newsom might nonetheless veto

    September 14, 2025
    AI & Tech

    xAI reportedly lays off 500 employees from knowledge annotation crew

    September 13, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Demo
    Top Posts

    Women cricketers send unity and hope on August 14

    August 14, 20256 Views

    Particular Training Division Punjab Jobs 2025 Present Openings

    August 17, 20253 Views

    Lawyer ‘very assured’ a overseas adversary attacked Canadian diplomats in Cuba – Nationwide

    August 17, 20253 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from FooBar about tech, design and biz.

    Demo
    Most Popular

    Women cricketers send unity and hope on August 14

    August 14, 20256 Views

    Particular Training Division Punjab Jobs 2025 Present Openings

    August 17, 20253 Views

    Lawyer ‘very assured’ a overseas adversary attacked Canadian diplomats in Cuba – Nationwide

    August 17, 20253 Views
    Our Picks

    Ethereum Devs Are Underpaid by Over 50%: Report

    September 14, 2025

    Each Tremendous Mario Recreation, Ranked From Worst To Greatest

    September 14, 2025

    Sri Lanka beat Bangladesh with ease in Asia Cup encounter – Sport

    September 14, 2025

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    Facebook X (Twitter) Instagram Pinterest
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms & Conditions
    • Advertise
    • Disclaimer
    © 2025 TheNews92.com. All Rights Reserved. Unauthorized reproduction or redistribution of content is strictly prohibited.

    Type above and press Enter to search. Press Esc to cancel.